93 research outputs found

    Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

    Get PDF
    Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN–RITC–BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g−1 nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN–RITC–BSAO complex, characterized by a specific activity of 0.81 IU g−1, could be used in the presence of polyamines to create a fluorescent magnetically drivable H2O2 and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system

    JPEG XT: A Compression Standard for HDR and WCG Images [Standards in a Nutshell]

    Get PDF
    High bit depth data acquisition and manipulation have been largely studied at the academic level over the last 15 years and are rapidly attracting interest at the industrial level. An example of the increasing interest for high-dynamic range (HDR) imaging is the use of 32-bit floating point data for video and image acquisition and manipulation that allows a variety of visual effects that closely mimic the real-world visual experience of the end user [1] (see Figure 1). At the industrial level, we are witnessing increasing traction toward supporting HDR and wide color gamut (WCG). WCG leverages HDR for each color channel to display a wider range of colors. Consumer cameras are currently available with a 14- or 16-bit analog-to-digital converter. Rendering devices are also appearing with the capability to display HDR images and video with a peak brightness of up to 4,000 nits and to support WCG (ITU-R Rec. BT.2020 [2]) rather than the historical ITU-R Rec. BT.709 [3]. This trend calls for a widely accepted standard for higher bit depth support that can be seamlessly integrated into existing products and applications. While standard formats such as the Joint Photographic Experts Group (JPEG) 2000 [5] and JPEG XR [6] offer support for high bit depth image representations, their adoption requires a nonnegligible investment that may not always be affordable in existing imaging ecosystems, and induces a difficult transition, as they are not backward-compatible with the popular JPEG image format

    Overview and Evaluation of the JPEG XT HDR Image Compression Standard

    Get PDF
    Standards play an important role in providing a common set of specifications and allowing inter-operability between devices and systems. Until recently, no standard for High Dynamic Range (HDR) image coding had been adopted by the market, and HDR imaging relies on proprietary and vendor specific formats which are unsuitable for storage or exchange of such images. To resolve this situation, the JPEG Committee is developing a new coding standard called JPEG~XT that is backwards compatible to the popular JPEG compression, allowing it to be implemented using standard 8-bit JPEG coding hardware or software. In this paper, we present design principles and technical details of JPEG~XT. It is based on a two-layers design, a base layer containing a Low Dynamic Range (LDR) image accessible to legacy implementations, and an extension layer providing the full dynamic range. The paper introduces three of currently defined profiles in JPEG~XT, each constraining the common decoder architecture to a subset of allowable configurations. We assess the coding efficiency of each profile extensively through subjective assessments, using 24 naive subjects to evaluate 20 images, and objective evaluations, using 106 images with five different tone-mapping operators and at 100 different bit rates. The objective results (based on benchmarking with subjective scores) demonstrate that JPEG~XT can encode HDR images at bit rates varying from 1.1 to 1.9 bit/pixel for estimated mean opinion score (MOS) values above 4.5 out of 5, which is considered as fully transparent in many applications. This corresponds to 23-times bitstream reduction compared to lossless OpenEXR PIZ compression

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing

    No full text
    The preservation of enzymatic activity is a fundamental requirement for exploiting hybrid nano-bio-conjugates, and the control over protein–nanoparticle interactions, leading to stable and catalytically active hybrids, represents the key for designing new biosensing platforms. In this scenario, surface active maghemite nanoparticles (SAMNs) represent a new class of naked magnetic nanoparticles, displaying peculiar electrocatalytic features and the ability to selectively bind proteins. Recombinant aminoaldehyde dehydrogenase from tomato (SlAMADH1) was used as a model protein, and successfully immobilized by self-assembly on the surface of naked SAMNs, where its enzymatic activity resulted preserved for more than 6 months. The hybrid nanomaterial (SAMN@SlAMADH1) was characterized by UV–Vis spectroscopy, mass spectrometry, and TEM microscopy, and applied for the development of a biosensor for the determination of aminoaldehydes in alcoholic beverages. Measurements were carried out in a low volume electrochemical flow cell comprising a SAMN modified carbon paste electrode for the coulometric determination of the NADH produced during the enzymatic catalysis. The present findings, besides representing the first example of an electrochemical biosensor for aminoaldehydes in an alcoholic matrix, open the door to the use of immobilized enzymes on naked metal oxides nanomaterials for biosensing

    Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A

    No full text
    The link between eukaryotic translation elongation factor 1A (eEF1A) and signal transduction pathways through the regulatory mechanism of phosphorylation has never been considered. In this review, we focus on the different kinases that recognize the Ser and Thr residues of the eEF1A1 and eEF1A2 isoforms and regulate their involvement in different cellular processes like cell survival and apoptosis. In this context, polyamines seem to play a role in the regulation of the translation elongation process by modulating the Ser/Thr kinases involved in the phosphorylation of translation elongation factors

    Bovine serum amine oxidase and chromate-modified iron oxide nanoparticles for polyamine biosensing

    No full text
    Surface active maghemite nanoparticles (SAMNs) represent a new class of naked maghemite nanoparticles, characterized by peculiar surface properties. A novel hybrid nanomaterial based on SAMNs was developed by coating nanoparticle surface with bichromate, leading to a SAMN@Cr2O7 core\u2013shell nanoconjugate. Electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry showed lower charge transfer resistances, higher capacitive currents, better electrochemical performances, as well as more reversible electrochemical behavior with respect to bare SAMNs. Bichromate shell enhanced SAMN electrocatalytic proper- ties toward hydrogen peroxide reduction at neutral pH. Furthermore, bovine serum amino oxidase (BSAO) was immobilized on the surface of SAMN@Cr2O7 by self-assembly, leading to a magnetic drivable nanocatalyst for polyamine oxidation (SAMN@Cr2O7-BSAO). The hybrid bio-nanomaterial was kinetically characterized and compared with the native enzyme. Immobilized BSAO showed a catalytic constant of about 10.2 % with respect to the native enzyme, while the Michaelis constant, Km , was about 3.7 times higher upon enzyme immobilization. Correspondingly, the binding process led to a 2.4 fold decrease of BSAO catalytic efficiency, kcat/Km. The immobilized enzyme (SAMN@Cr2O7-BSAO) was exploited, in a simple carbon paste electrode configuration, for the development of a new reagentless electrochemical biosensor for polyamines
    • 

    corecore